B1 Power Optimization for Chemical Exchange Saturation Transfer Imaging: A Phantom Study Using Egg White for Amide Proton Transfer Imaging Applications in the Human Brain
نویسندگان
چکیده
The chemical exchange saturation transfer (CEST) effect on an egg white (EW) suspension was investigated for optimization of magnetization transfer (MT) power (B1,rms) and pH dependency with the addition of lactic acid. Applying a higher MT pulse, B1,rms, Z-spectrum shows higher asymmetry and the magnetisation transfer ratio (MTR)asym signal increases to around 1-3.5 ppm, indicating a higher CEST effect. Amide proton transfer (APT) at 3.5 ppm shows a signal elevation in MTRasym with the application of higher B1,rms power and high pH. In addition, the hydroxyl proton signal in MTRasym increases as pH is reduced by lactic acid. In Z-spectrum of B1,rms at 1.0 μT and 2.0 μT, the dependence on CEST effect of amide proton and hydroxyl proton could be observed by using an EW suspension phantom. The CEST MT power was optimized on the EW suspension phantom with pH dependency and further confirmed on volunteers. In addition, APT imaging at 3.5 ppm using B1,rms at 1.0 μT performed on two human brains with different pathophysiological conditions indicated appropriate ATP effect.
منابع مشابه
Fast multislice pH-weighted chemical exchange saturation transfer (CEST) MRI with Unevenly segmented RF irradiation.
Chemical exchange saturation transfer (CEST) MRI is a versatile imaging technique for measuring microenvironment properties via dilute CEST labile groups. Conventionally, CEST MRI is implemented with a long radiofrequency irradiation module, followed by fast image acquisition to obtain the steady state CEST contrast. Nevertheless, the sensitivity, scan time, and spatial coverage of the conventi...
متن کاملPathological Assessment of Brain White Matter in Relapsing-Remitting MS Patients using Quantitative Magnetization Transfer Imaging
Introduction: Multiple sclerosis (MS) is characterized by lesions in the white matter (WM) of the central nervous system. Magnetic resonance imaging is the most specific and sensitive method for diagnosis of multiple sclerosis. However, the ability of conventional MRI to show histopathologic heterogeneity of MS lesions is insufficient. Quantitative magnetization transfer imaging (qMTI) is a rel...
متن کاملAnalytical determination of the chemical exchange saturation transfer (CEST) contrast in molecular magnetic resonance imaging
Magnetic resonance based on molecular imaging allows tracing contrast agents thereby facilitating early diagnosis of diseases in a non-invasive fashion that enhances the soft tissue with high spatial resolution. Recently, the exchange of protons between the contrast agent and water, known as the chemical exchange saturation transfer (CEST) effect, has been measured by applying a suitable pulse ...
متن کاملPower Optimization of In-vivo Chemical Exchange Saturation Transfer (CEST) contrast for pH weighted Imaging
Chemical exchange saturation transfer (CEST) imaging provides a unique contrast through the exchange between solute protons and bulk water protons 1. It can detect tissue acidosis and elevated protein content in acute ischemia and animal tumor models 2,3. Conventionally, a continuous wave (CW) RF pulse is applied at the solute proton frequency and the saturation is transferred to the bulk water...
متن کاملMagnetic resonance imaging of the Amine-Proton EXchange (APEX) dependent contrast
Chemical exchange between water and labile protons from amino-acids, proteins and other molecules can be exploited to provide tissue contrast with magnetic resonance imaging (MRI) techniques. Using an off-resonance Spin-Locking (SL) scheme for signal preparation is advantageous because the image contrast can be tuned to specific exchange rates by adjusting SL pulse parameters. While the amide-p...
متن کامل